Green Chemistry Case Studies: Presidential Green Chemistry Challenge Awards 2012 Winners

Nicole Casasnovas Hannah Needleman July 2012

Case 3: Buckman International, Inc.

Winner in the Area of Design of Greener Chemicals

Buckman

Commitment makes the best chemistry.

Overview

Title: Enzymes Reduce the Energy and Wood Fiber Required to Manufacture High-Quality Paper and Paperboard

Summary:

Traditionally, making strong paper required costly wood pulp, energy-intensive treatment, or chemical additives. But that may change. Buckman's Maximyze® enzymes modify the cellulose in wood to increase the number of "fibrils" that bind the wood fibers to each other, thus making paper with improved strength and quality -- without additional chemicals or energy. Buckman's process also allows papermaking with less wood fiber and higher percentages of recycled paper, enabling a single plant to save \$1 million per year.

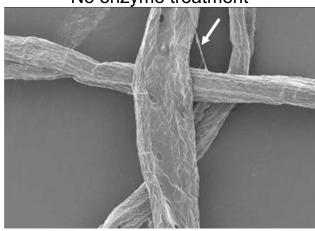
Buckman Receiving EPA Presidential Green Chemistry Challenge Award

Motivation Business Drivers

- The paper and packaging industry is an important part of the US economy
 - Product sales: \$115 billion per year
 - Employment: About 400,000 people
 - Shipping: Over 95% of all products in the US are shipped in corrugated boxes
- Why was it important to spend resources developing this technology?
 - Buckman has been developing this type of technology for over 20 years
 - Many good reasons to use enzymes, which helps in making profits to keep the company sustainable
 - History of creating and improving enzymes for the paper industry

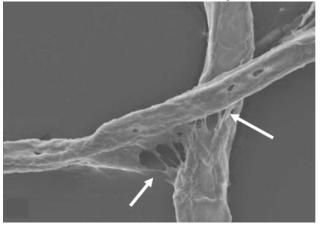
Motivation Innovations in Science and Engineering

- Cellulose fibers are the basic structural material of paper
- Properties of a sheet of paper like strength and weight depend on bonding between cellulose fibers
- Existing Technology:
 - Papermakers can improve paper strength by:
 - Adding different wood pulps (costly)
 - Increasing mechanical treatment (requires significant energy expenditure)
 - Using various chemical additives (many derived from non-renewable resources)
 - In nature, cellulases are enzymes that catalyze the hydrolysis of cellulose to degrade and recycle this organic compound
 - Endoclucanases disrupt the crystalline structure of cellulose and expose individual chains
 - Exocellulases separate pieces of two to four sugar monomers from the exposed chains
 - Cellobiases hydrolyze those fragments into glucose
 - <u>Can enzymes like</u> cellulases be used to improve papermaking?
- Can we do better?



Technology Development

- Approach: Select enzymes within the cellulase group to modify cellulose fibers in order to improve paper quality and support greener manufacturing practices.
- Maximyze technology consists of specific enzymes that improve inter-fiber bonding in cellulose, increasing the strength of paper.


Bonding of Refined Cellulose Fibers (500x)

No enzyme treatment

Limited number of fibrils (arrow) can be seen connecting adjacent fibers

Treated with Maximyze

Fibrillation is evident through multiple fibrils (arrows) between cellulose fibers

Business Activities

- Partnered with some major suppliers of enzymes
- Buckman has established long term relationships with customers
- Intimately involved in the entire papermaking process
- Unique sales people with biology and chemistry backgrounds form personal relationships with customers

Impact

Environmental, Health, and Safety Benefits

- Less cellulose fiber required to produce paper and related products
 - o Less trees required to produce pulp, which helps maintaing our woodsources
 - Increase in the proportion of hardwood fiber needed to maintain paper strength (reduces amount of softwood fibers, which have a higher cost)
- Reduced energy per ton of paper produced due to a more efficient refining process and using less steam to dry products during the papermaking process
- Less resources required for shipping due to lighter paper weight
- More utilization of recycled paper, which reduces volumes in landfills
 - The paper industry has a strong commitment to sustainability, maintaining forest lands, and recycling: 63.5% of paper consumed in the US is recovered and recycled to be reused back in the manufacture of paper and paperboard.
- Use of enzymes, which are safer with regard to human health and the environment
 - Made using renewable raw materials in a fermentation process
 - Completely biodegradable

Impact

Economic Benefits

- Manufacturing plants using Maximyze see clear economic benefits and improved sustainability in a variety of areas.
- Estimated total savings: \$1,058,000 per year

Economic and Environmental Benefits of Maximyze			
Parameter	Before	With Maximyze	Benefit (\$/ton)
Tons of steam per ton of paper (@\$16/ton of steam)	2.23	1.86	\$5.90
Average production (ton/day) incremental value = \$100/ton	125.8	147.6	\$15.60
Total filler (%) @ \$5 benefit/1% filler replacing fiber in sheet	23	24	\$5.00
Total benefits (\$/ton)			\$26.50
Estimated total savings (\$/day)			\$3,200
Estimated total savings (\$/year)			\$1,058,000

Thank You!

- The following representative was integral in the creation of this report:
 - Philip Hoekstra, Buckman International Inc.

